Меню

Решить задачу по математике про течение реки



Задания №11. Задачи на движение по воде

Также смотрите видеолекцию «Текстовые задачи» здесь.

Кстати, что делать, если дискриминант решаемого квадратного уравнения намечается слишком большой, – смотрите здесь и здесь).

Задача 1.

Моторная лодка прошла против течения реки 120 км и вернулась в пункт отправления, затратив на обратный путь на 2 часа меньше. Найдите скорость лодки в неподвижной воде, если скорость течения равна 1 км/ч. Ответ дайте в км/ч.

Задача 2.

Байдарка в 10:00 вышла из пункта А в пункт В, расположенный в 15 км от А. Пробыв в пункте В 1 час 20 минут, байдарка отправилась назад и вернулась в пункт А в 16:00. Определите (в км/ч) собственную скорость байдарки, если известно, что скорость течения реки 2 км/ч.

Задача 3.

От пристани А к пристани В отправился с постоянной скоростью первый теплоход, а через 2 часа после этого следом за ним со скоростью на 2 км/ч большей отправился второй. Расстояние между пристанями равно 168 км. Найдите скорость первого теплохода, если в пункт В оба теплохода прибыли одновременно. Ответ дайте в км/ч.

Задача 4.

Пристани A и B расположены на озере, расстояние между ними 234 км. Баржа отправилась с постоянной скоростью из A в B. На следующий день после прибытия она отправилась обратно со скоростью на 4 км/ч больше прежней, сделав по пути остановку на 8 часов. В результате она затратила на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость баржи на пути из A в B. Ответ дайте в км/ч.

Задача 5.

Расстояние между пристанями A и B равно 72 км. Из A в B по течению реки отправился плот, а через 3 часа вслед за ним отправилась яхта, которая, прибыв в пункт B, тотчас повернула обратно и возвратилась в A. К этому времени плот прошел 39 км. Найдите скорость яхты в неподвижной воде, если скорость течения реки равна 3 км/ч. Ответ дайте в км/ч.

Задача 6.

Путешественник переплыл море на яхте со средней скоростью 28 км/ч. Обратно он летел на спортивном самолете со скоростью 532 км/ч. Найдите среднюю скорость путешественника на протяжении всего пути. Ответ дайте в км/ч.

Задача 7.

По морю параллельными курсами в одном направлении следуют два сухогруза: первый длиной 130 метров, второй — длиной 120 метров. Сначала второй сухогруз отстает от первого, и в некоторый момент времени расстояние от кормы первого сухогруза до носа второго составляет 600 метров. Через 11 минут после этого уже первый сухогруз отстает от второго так, что расстояние от кормы второго сухогруза до носа первого равно 800 метрам. На сколько километров в час скорость первого сухогруза меньше скорости второго?

Смотрите также видеорешение аналогичной задачи.

Источник

Урок математики в 5-м классе по теме «Задачи на движение по реке»

Тема: Задачи на движение по реке.

  • обобщить и систематизировать знания по теме «Задачи на движение по реке»;
  • проверить знание теоретического материала, умение решать задачи арифметическим способом;
  • развивать кругозор, мышление, внимание, культуру математической речи;
  • прививать интерес к математике.

Методы обучения: частично-поисковый (эвристический), системные обобщения, самопроверка, взаимопроверка.

Формы организации урока: фронтальная, индивидуальная.

Оборудование: презентация к уроку, листы учета знаний.

I. Организационный момент

Сообщить учащимся цели урока. Настроить ребят на активную работу.

II. Проверка домашнего задания

Собственная скорость теплохода 27км/ч, скорость течения реки 3 км/ч. Сколько времени затратит теплоход на путь по течению реки между двумя причалами, если расстояние между ними 120 км?

1) Vпо теч.= Vсоб.+ Vтеч. = 27 + 3 = 30 (км/ч).
2) tпо теч.= S : Vпо теч.= 120 : 30 = 4 (ч.)

Читайте также:  Minecraft дом у реки

Катер, имеющий собственную скорость 15 км/ч, проплыл 2 часа по течению реки и 3часа против течения. Какое расстояние проплыл катер за все время, если скорость течения реки 2 км/ч?

1) Vпо теч.= Vсоб. + Vтеч.= 15 + 2 = 17 (км/ч.)
2) Vпр. теч.= Vсоб. – Vтеч.= 15 – 2 = 13 (км/ч.)
3) Sпо теч.= Vпо теч. · tпо теч. = 17 · 2 = 34 (км)
4) Sпр теч.= Vпр. теч.· t пр. теч.=13 · 3 = 39 (км)
5) S=Sпо теч.+ Sпр. теч. = 34 + 39 = 73 (км)

III. Актуализация знаний

Вопросы: (устно или с использованием проектора.)

1. Что такое собственная скорость катера? Ответ : скорость катера в стоячей воде (озере, пруду).
2. Что такое скорость течения? Ответ: на какое расстояние относит река предмет за единицу времени.
3. Как определяется скорость катера по течению реки? Ответ: как сумма скорости собственной и течения.
4. Как определяется скорость катера против течения? Ответ: как разность скорости собственной и течения.
5. Как определяется скорость движения плота по реке? Ответ: как скорость течения реки.

Vпо течению – сумма V течения и V собственной.
V против течения – разность Vсобственной и Vтечения.
Значит, зная Vпо течению и Vпротив течения, можно найти Vтечения и Vсобственной.

Вспомним задачу на нахождение двух чисел по их сумме и разности.

1) (V по теч. – V пр. теч.) : 2 = Vтеч.
2) Vпо теч. – Vтеч. = Vсоб.

IV. Решение задач

Из четырех скоростей (Vсоб.,Vпо теч.,Vпр. теч.,Vтеч. ) две заданы и изображены отрезком. Вычислите две другие скорости и изобразите их отрезками:

Источник

Решение задач на движение по реке, математика, 8 класс

«Текстовые задачи по математике», 8 класс Улатова Наталья Николаевна

Описание презентации по отдельным слайдам:

«Текстовые задачи по математике», 8 класс Улатова Наталья Николаевна

Задачи на движение обычно содержат следующие величины: – время, – скорость, – расстояние. Уравнения, связывающее эти три величины: v S t

21,6км/ч Устно. Собственная скорость катера 21,6 км/ч, а скорость течения 4,7км/ч. Найдите скорость катера по течению и против течения. 21,6км/ч Против течения По течению 4,7км/ч

Против течения По течению vпо теч= vсоб+ vтеч vпр теч= vсоб – vтеч vтеч.

В диафильме «Дюймовочка» есть такой кадр. Лист кувшинки поплыл по течению и жаба никак не могла догнать Дюймовочку. Объяснить физическую несостоятельность этой ситуации.

Составь и реши уравнение самостоятельно 1. На путь по течению реки катер затратил 3ч, а на обратный путь 4,5ч. Какова скорость течения реки, если скорость катера относительно воды 25 км/ч? 25–х 4,5(25–х) 4,5 Пусть vтеч = x 1й способ справка справка справка справка Это условие поможет ввести х …

25+х t, ч v, км/ч 3 25–x 4,5 Решим задачу с помощью пропорции. 2й способ Составим пропорцию для обратно пропорциональной зависимости:

2. Моторная лодка прошла 18 км по течению и 14 км против течения, затратив на весь путь 3 ч 15 мин. Найдите скорость течения, если собственная скорость лодки 10 км/ч. 10–х 14 Пусть vтеч = x справка справка Это условие поможет ввести х … справка 3 Составь и реши уравнение самостоятельно

3. Катер прошел 75 км по течению и столько же против течения. На весь путь он затратил в 2 раза больше времени, чем ему понадобилось бы, чтобы пройти 80 км в стоячей воде. Какова скорость катера в стоячей воде, если скорость течения равна 5 км/ч? х–5 75 Пусть vсоб. = x справка справка Это условие поможет ввести х … справка х 80 справка Реши уравнение самостоятельно

x + y = 15 4. Катер проплыл 15 км вниз по течению реки за 1 ч и вернулся на ту же пристань, потратив на обратный путь 1,5 ч. Найти скорость катера относительно воды и скорость течения воды. 15 1,5 Пусть vсоб. = x Вопрос задачи поможет нам ввести х и у справка 15 10 , vтеч. = y x + y = x – y = + 2x = 25 x = 12,5 y = 2,5 Ответ: собственная скорость катера 12,5 км/ч, скорость течения 2,5 км/ч. 15 10

Читайте также:  Река берет начало в скалистых горах является самым крупным притоком миссисипи

= b b(x–y) Разделим обе части на y(b–a) y a(x+y) Расстояние, например, разделим на скорость плотов (это скорость течения ) a(x+y) = b(x–y) ax+ay = bx–by ay+by = bx–ax y(a+b) x(b–a) = 5. Катер затрачивает на путь от А до В по течению реки ч, а на обратный путь часов. Сколько часов будут плыть от А до В плоты? Предполагается, что собственная скорость катера на всем пути от А до В и от В до А постоянна. x–y Пусть vсоб. = x , vтеч. = y a b Раскроем скобки Перегруппируем Ответим на вопрос задачи + a = a( Разделим каждое слагаемое на y Вынесем за скобки a +1) Выполним замену Упростим выражение в скобках a(x+y) справка *

6. Пловец плывет против течения реки и встречает плывущую по течению реки пустую лодку. Продолжая плыть против течения еще минут после момента встречи, он затем поворачивает назад и догоняет лодку в метрах от места встречи. Найти скорость течения реки. t S Просмотрев сюжет задачи, мы видим, что вид движения менялся. Это было движение в противоположных направлениях, а на последнем этапе – вдогонку. Поэтому нам необходимо рассмотреть несколько схем. *

6. Пловец плывет против течения реки и встречает плывущую по течению реки пустую лодку. Продолжая плыть против течения еще минут после момента встречи, он затем поворачивает назад и догоняет лодку в метрах от места встречи. Найти скорость течения реки. t S Пусть vтеч. = x – это также и скорость пустой лодки vсоб. = y – это собственная скорость пловца vпр. теч. = y–x – это скорость пловца против течения vпо. теч. = y+x – это скорость пловца по течению *

Найдем расстояние, на которое удалятся лодка и пловец за t мин 6. Пловец плывет против течения реки и встречает плывущую по течению реки пустую лодку. Продолжая плыть против течения еще минут после момента встречи, он затем поворачивает назад и догоняет лодку в метрах от места встречи. Найти скорость течения реки. t S vтеч. = x vсоб. = y vпр. теч. = y–x vпо. теч. = y+x x 1) tx проплывет лодка за t мин. 2) t(y–x) проплывет пловец за t мин. 4) (y+x) – x = y скорость движения вдогонку 5) ty : y = t произойдет вторая встреча 6) tx проплывет лодка до второй встречи tx tx 7) S=2tx, t(y–x) 3) t(y–x)+ tx = ty проплывут вместе за t мин. Далее вид движения меняется. Теперь это движение вдогонку. t *

7. От пристани по течению реки отправился плот. Через 5 ч 20 мин вслед за плотом той же пристани отправилась моторная лодка, которая догнала плот, пройдя 20 км. Какова скорость плота, если известно, что скорость моторной лодки больше скорости плота на 12 км/ч? х +12 20 20 На Это условие поможет ввести х … 5ч 20 мин Составьте и решите уравнение самостоятельно

Задачи для самостоятельной работы. 1. Моторная лодка прошла путь от А до В по течению реки за 2,4 ч, а обратный путь за 4 ч. Найти скорость течения реки, если известно, что скорость лодки относительно воды 16 км/ч. 2. Моторная лодка прошла по течению реки 36 км и возвратилась обратно, затратив на весь путь 5 ч. Найдите скорость моторной лодки в стоячей воде, зная, что скорость течения равна 3 км/ч. 3. Моторная лодка и парусник, находясь на озере в 30 км друг от друга, движутся навстречу и встречаются через 1 ч. Если бы моторная лодка находилась в 20 км от парусника и догоняла его, то на это потребовалось бы 3 ч 20 мин. Определить скорости лодки и парусника, полагая, что они постоянны и неизменны в обоих случаях.

Читайте также:  Река дунай сообщение по географии

Движение по ветру и против ветра. Над пунктом А вертолет был в 8ч 30 мин. Пролетев по прямой км, вертолет оказался над пунктом В. Продержавшись 5 мин в воздухе над пунктом B, вертолет пошел обратным курсом по то же трассе. К пункту А он вернулся в 10 ч 35 мин. От А к В он летел по ветру, а обратно против ветра. Скорость ветра все время была постоянной. Найти скорость ветра, если собственная скорость вертолета также все время постоянна и при безветрии равна км/ч. При каком соотношении между заданными величинами задача имеет решение? по ветру против ветра * Решите задачу самостоятельно S v

  • Все материалы
  • Статьи
  • Научные работы
  • Видеоуроки
  • Презентации
  • Конспекты
  • Тесты
  • Рабочие программы
  • Другие методич. материалы

Разработка урока по теме «Решение задач на движение по реке» для обучающихся 8 класса, с использованием презентации. в ДАННОЙ РАЗРАБОТКЕ ПРЕДСТАВЛЕНЫ РАЗЛИЧНЫЕ ЗАДАЧИ НА ДАННУЮ тему, представлен различный уровень данных задач, материал предоставлен очень наглядно и красочно. В разработке учитывается индивидуальный темп работы обучающихся.

Номер материала: ДБ-785520

  • Свидетельство каждому участнику
  • Скидка на курсы для всех участников

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Текстовые задачи на движение по воде.

Задача 1. Баржа прошла по течению реки 40 км и, повернув обратно, прошла ещё 30 км, затратив на весь путь 5 часов. Найдите собственную скорость баржи, если скорость течения реки равна 5 км/ч.

км/ч — собственная скорость баржи. Ограничение:

— скорость баржи по течению,

— скорость баржи против течения. Заполним таблицу.

ч — время движения баржи по течению реки.

ч — время движения баржи против течения реки.

На весь путь баржа затратила 5 часов. Составим и решим уравнение.

Моторная лодка прошла против течения реки 208 км и вернулась в пункт отправления, затратив на обратный путь на 5 часов меньше, чем на путь против течения. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 5 км/ч.

км/ч — собственная скорость моторной лодки. Ограничение:

— скорость моторной лодки по течению,

— скорость моторной лодки против течения.

ч — время, затраченное на обратный путь. Заполним таблицу.

Составим и решим уравнение.

Задача 3. Расстояние между пристанями А и В равно 140 км. Из А в В по течению реки отправился плот, а через час вслед за ним отправилась моторная лодка, которая, прибыв в пункт В, тотчас повернула обратно и возвратилась в А. К этому времени плот проплыл 51 км. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 3 км/ч.

км/ч — собственная скорость моторной лодки. Ограничение:

Источник