Меню

Отражение света в озере



Отражение света

В предыдущем параграфе мы изучили распространение света в одной и той же оптической среде. Теперь перейдём к изучению явлений, связанных с распространением света на границе раздела двух сред.

Проделаем опыт. На зеркало, лежащее на столе, поставим полуоткрытую книгу и слева направим пучок света (см. рисунок). В темноте мы увидим падающий и отражённый пучки света. Накроем зеркало листом бумаги. Теперь мы будем видеть падающий пучок, а отражённого пучка не будет. Получается, что свет не отражается от бумаги?

Приглядимся к рисункам внимательнее. Заметьте, когда свет падает на открытое зеркало, книга освещена очень слабо. Но когда свет падает на лист бумаги, книга освещается гораздо ярче, особенно в нижней части. Следовательно, книгу освещают лучи, отражённые бумагой.

Как следует из этого опыта, при отражении света возможны два варианта. 1. Пучок света, падающий на поверхность, отражается ею также в виде пучка (см. левый чертёж). Такое явление называют зеркальным отражением. 2. Пучок света, падающий на поверхность, отражается ею во множестве направлений. Такое явление называют рассеянным отражением или просто рассеянием света (см. правый чертёж).

Зеркальное отражение возникает на очень гладких поверхностях, их называют зеркальными (например, ровное стекло, поверхность воды на озере в безветренную погоду). Если же поверхности шероховатые, их называют матовыми, и они обязательно будут рассеивать свет. Это мы и наблюдали, накрывая зеркало бумагой. Она отражала свет, рассеивая его по всевозможным направлениям, в том числе и на книгу, освещая её.

Закон отражения света. Чтобы сформулировать закон, которому подчиняется отражение света, введём несколько определений.

Угол падения – угол между падающим лучом и перпендикуляром к отражающей поверхности в точке излома луча (a). Угол отражения – угол между отражённым лучом и перпендикуляром к отражающей поверхности в точке излома луча (b).

При отражении света всегда выполняются две закономерности, вместе составляющие закон отражения света: а) луч падающий, луч отражённый и перпендикуляр к отражающей поверхности в точке излома луча лежат в одной плоскости; б) угол падения равен углу отражения.

Каждое из утверждений закона отражения света подтверждается многочисленными опытами, одним из которых служит опыт с зеркалом, описанный в начале параграфа. С помощью транспортира вы легко убедитесь, что угол падения равен углу отражения. А, подняв бумагу с зеркала, легко увидеть, что падающий и отражённый лучи вместе с перпендикуляром к зеркалу в точке излома луча лежат в одной плоскости – листа бумаги, если его расположить перпендикулярно зеркалу.

Закон отражения является справедливым как для зеркального, так и для рассеянного отражения света. Обратимся ещё раз к чертежам на предыдущей странице. Несмотря на кажущуюся беспорядочность в отражении лучей на правом чертеже, они расположены так, что углы отражения равны углам падения.

Закон отражения света выполняется не только в воздухе, но и в вакууме, а также внутри жидкостей и твёрдых тел, которые прозрачны для оптических излучений. Например, надев маску для ныряния и сев на дно мелководного озера или реки, в солнечный день мы увидим отражение дна или проплывающих мимо рыб от поверхности воды под водой.

Источник

Явления, связанные с преломлением света

ПРЕЛОМЛЕНИЕ СВЕТА ПРИ ПЕРЕХОДЕ ИЗ ВОДЫ В ВОЗДУХ

Опущенная в воду палочка, ложечка в стакане чая вследствие преломления света на поверхности воды кажутся нам преломленными.Поместите на дно непрозрачного сосуда монету так, чтобы она не была видна. А теперь налейте в сосуд воды. Монета окажется видимой. Объяснение этого явления понятно из видео.Посмотрите на дно водоема и попытайтесь оценить его глубину. Чаще всего сделать это правильно не удается.Проследим более детально, как и насколько нам кажется уменьшенной глубина водоема, если мы смотрим на него сверху.

Пусть Н (рис. 17) — это истинная глубина водоема, на дне которого лежит небольшой предмет, например камешек. Свет, отраженный им, расходится во все стороны. Некоторый пучок лучей падает на поверхность воды в точке О снизу под углом а1, преломляется на поверхности и попадает в глаз. В соответствии с законом преломления можно записать:

Читайте также:  Розовое озеро алтайский край как добраться

но так как n2 = 1, то n1 sin a1 = sin ϒ1.Преломленный луч попадает в глаз в точке В. Заметим, что в глаз попадает не один луч, а пучок лучей, сечение которого ограничено зрачком глаза.

На рисунке 17 пучок показан тонкими линиями. Однако этот пучок узок и мы можем пренебречь его сечением, приняв его за линию АОВ.Глаз проецирует А в точку А1, и глубина водоема нам кажется равной h.Из рисунка видно, что кажущаяся глубина водоема h зависит от истинной величины Н и от угла наблюдения ϒ1.Выразим эту зависимость математически.Из треугольников АОС и А1ОС имеем:

Исключая из этих уравнений ОС, получим:

Учитывая, что а = ϒ1 и sin ϒ1 = n1 sin a1 = n sin a, получим:

В этой формуле зависимость кажущейся глубины водоема h от истинной глубины Н и угла наблюдения не Выступает явно. Для более отчетливого представления этой зависимости выразим ее графически.На графике (рис. 18) по оси абсцисс отложены значения углов наблюдения в градусах, а по оси ординат — соответствующие им кажущиеся глубины h в долях действительной глубины Н. Полученная кривая показывает, что при малых углах наблюдения кажущаяся глубина

составляет около ¾ действительной и уменьшается по мере увеличения угла наблюдения. При угле наблюдения а = 47° наступает полное внутреннее отражение и луч из воды не может выйти наружу.

МИРАЖИ

В неоднородной среде свет распространяется непрямолинейно. Если мы представим себе среду, в которой показатель преломления изменяется снизу вверх, и мысленно разобьем ее на тонкие горизонтальные слои,

то, рассматривая условия преломления света при переходе от слоя к слою, заметим, что в такой среде луч света должен постепенно изменять свое направление (рис. 19, 20).Такое искривление световой луч претерпевает в атмосфере, в которой по тем или иным причинам, главным образом благодаря неравномерному нагреванию ее, показатель преломления воздуха изменяется с высотой (рис. 21).

Воздух обычно нагревается от почвы, поглощающей энергию солнечных лучей. Поэтому температура воздуха понижается е высотой. Известно также, что с высотой понижается и плотность воздуха. Установлено, что с увеличением высоты показатель преломления уменьшается, поэтому лучи, идущие сквозь атмосферу искривляются, пригибаясь к Земле (рис. 21). Это явление получило название нормальной атмосферной рефракции. Вследствие рефракции небесные светила кажутся нам несколько «приподнятыми» (выше своей истинной высоты) над горизонтом.Вычислено, что атмосферная рефракция «приподнимает» предметы, находящиеся на высоте 30°, на 1’40», на высоте 15°— на З’ЗО», на высоте 5° — на 9’45». Для тел, находящихся на горизонте, эта величина достигает 35′. Эти цифры отклоняются в ту или другую сторону в зависимости от давления и температуры атмосферы. Однако по тем или иным причинам в верхних слоях атмосферы могут оказаться массы воздуха с температурой более высокой по сравнению с нижними слоями. Их могут принести ветры из жарких стран, например, из области горячей пустыни. Если в это время в нижних слоях находится холодный, плотный воздух антициклона, то явление рефракции может значительно усилиться и лучи света, выходящие от земных предметов вверх под некоторым углом к горизонту, могут вернуться обратно на землю (рис. 22).

Однако может случиться так, что у поверхности Земли вследствие сильного ее нагревания, воздух настолько разогревается, что показатель преломления света вблизи почвы станет меньше, чем на некоторой высоте над почвой. Если при этом стоит безветренная погода, то такое состояние может сохраниться довольно долго. Тогда лучи от предметов, падающие под некоторым довольно большим углом к поверхности Земли, могут искривляться настолько, что, описав дугу около поверхности Земли, они пойдут снизу вверх (рис. 23а). Возможен и случай, показанный на рисунке 236.

Описанные выше состояния в атмосфере и объясняют возникновение интересных явлений — атмосферных миражей . Эти явления обычно делят на три класса. К первому классу относят наиболее распространенные и простые по своему происхождению, так называемые озерные (или нижние) миражи, вызывающие столько надежд и разочарований у путников пустынь.

Читайте также:  Как первое озеро для рыбалки

Французский математик Гаспар Монж, участвовавший в египетской кампании 1798 г., так описывает свои впечатления от миражей этого класса:«Когда поверхность Земли сильно накалена Солнцем и только-только начинает остывать перед началом сумерек, знакомая местность больше не простирается до горизонта, как днем, а переходит, как кажется, примерно в одном лье в сплошное наводнение.Деревни, расположенные дальше, выглядят словно острова среди обширного озера. Под каждой деревней — ее опрокинутое отражение, только оно не резкое, мелких деталей не видно, как отражение в воде, колеблемой ветром. Если станешь приближаться к деревне, которая кажется окруженной наводнением, берег мнимой воды все удаляется, водный рукав, отделявший нас от деревни, постепенно суживается, пока не исчезнет совсем, а озеро. теперь начинается за этой деревней, отражая в себе деревни, расположенные дальше» (рис. 24).Объяснение этого явления простое. Нижние слои воздуха, разогретые от почвы, не успели еще подняться вверх; их показатель преломления света меньше, чем верхних. Поэтому лучи света, исходящие от предметов (например, от точки В на пальме, рис. 23а), изгибаясь в воздухе, попадают в глаз снизу. Глаз проецирует луч в точку В1. То же происходит с лучами, идущими от других точек предмета. Предмет кажется наблюдателю опрокинутым.Откуда же вода? Вода — это отражение небосвода.Чтобы увидеть мираж, нет надобности ехать в Африку. Его можно наблюдать в жаркий тихий летний день и у нас над разогретой поверхностью асфальтового шоссе.Миражи второго класса называют верхними или миражами дальнего видения. На них больше всего похоже «неслыханное чудо», описанное Н. В. Гоголем. Приведем описания нескольких таких миражей.С Лазурного берега Франции ранним ясным утром из вод Средиземного моря, из -за горизонта, поднимается темная цепочка гор, в которой жители узнают Корсику. Расстояние до Корсики больше 200 км, так что о прямой видимости не может быть и речи.На английском побережье, близ Гастингса, можно видеть французский берег. Как сообщает натуралист Нье-диге, «близ Реджо в Калабрии, напротив сицилийского берега и города Мессины, временами видны в воздухе целые незнакомые местности с пасущимися стадами, кипарисовыми рощами и замками. Недолго продержавшись в воздухе, миражи исчезают».Миражи дальнего видения появляются в том случае, если верхние слои атмосферы окажутся по каким-либо причинам, например при попадании туда нагретого воздуха, особенно разреженными. Тогда лучи, исходящие от земных предметов, искривляются сильнее и достигают земной поверхности, идя под большим углом к горизонту. Глаз же наблюдателя проецирует их в том направлении, по которому они входят в него.

Источник

Отражение света в озере ночью — Стоковая фотография

Отражение света в озере ночью — стоковое фото

Отражение света в озере ночьюКупите это изображение всего за €1 с нашим Гибким планом Получить

Похожие лицензионные изображения:

Та же модель:

Информация об использовании

Фотографию «Отражение света в озере ночью» можно использовать в личных и коммерческих целях согласно условий купленной/приобретенной Royalty-free лицензии. Изображение доступно для скачивания в высоком качестве с разрешением до 5616×3744.

  • Страна: Russian Federation
  • Локация: На улице
  • Ориентация изображения: Горизонтальные
  • Время суток: Ночь

Ключевые слова стокового изображения:

Depositphotos
  • О фотостоке
  • Наши планы и цены
  • Решения для бизнеса
  • Блог Depositphotos
  • Реферальная программа
  • Партнерская программа
  • Программа API
  • Вакансии
  • Новые изображения
  • Бесплатные изображения
  • Регистрация поставщика
  • Продавайте стоковые фото
  • English
  • Deutsch
  • Français
  • Español
  • Русский
  • Italiano
  • Português
  • Polski
  • Nederlands
  • 日本語
  • Česky
  • Svenska
  • 中文
  • Türkçe
  • Español (Mexico)
  • Ελληνικά
  • 한국어
  • Português (Brasil)
  • Magyar
  • Українська
  • Bahasa Indonesia
  • ไทย
  • Norsk
  • Dansk
  • Suomi
Информация
  • Часто задаваемые вопросы
  • Все документы
  • Bird In Flight — Журнал о фотографии
Контакты
    +7-495-283-98-24
  • Живой чат
  • Свяжитесь с нами
  • Отзывы о Depositphotos
Читайте нас

© 2009-2021. Корпорация Depositphotos, США. Все права защищены.

Источник

Отражение света в озере

И. Северянин. «Nocturne»

Отражения самых различных источников света от поверхности воды часто имеют вид длинных дорожек света, направленных от источника к нашему глазу. Вспомните хотя бы отражение солнца в море во время заката или отражения от уличных фонарей набережной в реке. Широкую полосу света отбрасывает луна, отражаясь в море или озере.

Читайте также:  Дом в каслях у озера

Все эти явления происходят вследствие того, что каждая маленькая волна на поверхности воды дает свое отдельное изображение. Попробуем разобраться, почему все освещенные волны вместе образуют продолговатую фигуру, вытянутую от источника света к наблюдателю,- дорожку.

Мы уже говорили, что рябь образуется на воде при волнении 1-3 балла по шкале Бофорта. При меньшем ветре поверхность воды отражает как плоское зеркало (состояние штиля). При большем она покрывается белыми барашками, и световая дорожка теряет резкие очертания. Рябь можно представить как множество мелких волн, разбросанных по поверхности воды абсолютно неправильно и возникающих одинаково часто во всех направлениях. Крутизна склона волн при этом не превышает некоторого предельного значения α, которое зависит от силы ветра и может достигать 20-30°.

Попробуем теперь найти границу полосы света, несколько упростив задачу. Именно, будем считать, что в каждом месте поверхности имеется большое число маленьких зеркальных волн, крутизна склонов которых меняется в пределах от 0 до α, и волны имеют различные направлениям. Кроме того, для простоты будем считать, что наблюдателя и источник света находятся на одном уровне над поверхностью воды h (рис. 1).

Маленькое горизонтальное зеркальце будет отбрасывать свет в глаз наблюдателя 0 только в том случае, когда расстояния от него до наблюдателя и до источника одинаковы (в точке М). Если же зеркало наклонено под углом а в сторону наблюдателя, то для того чтобы отраженный свет! попадал в глаз, оно должно быть несколько сдвинуто от наблюдателя (точка N). Зеркальце, наклоненное под углом! а в противоположную сторону, должно находиться в точке N’.

Наклонные положения зеркала аналогичны крайним положениям волн, при которых отраженный от них свет еще попадает в наш глаз. Поэтому расстояние между N и N’ определяет длину световой дорожки. Во всех точках между N к N’ найдутся участки волн, имеющие достаточный наклон для того, чтобы отражать лучи в наш глаз.

Рис. 1
Рис. 1

Рассмотрим теперь углы между лучами света. Из рис. 1 видно, что β + α = γ + δ, β — α = ε = δ, откуда γ = α + β — (β — α) = 2α. Таким образом, мы приходим к выводу, что угол, под которым мы видим большую ось светового пятна, просто равен углу между двумя наиболее крутыми склонами. Нетрудно посчитать и линейный размер большой ось пятна NN’.

Рис. 2
Рис. 2

Короткая ось пятна отраженного света легко находится аналогичным способом. Если сместить зеркальце из точки М в направлении, перпендикулярном NN’, то для того чтобы отраженный свет попал в глаз наблюдателя, зеркальце надо повернуть на некоторый угол вокруг оси, параллельной NN’ (рис. 2). Считая, что предельный угол поворота зеркальца по-прежнему равен а, находим, что ширина полосы света pp’ = 2h tgα, и следовательно, короткая ось стягивает угол β = 2htgα /√(t 2 +h 2 )

Отношение двух видимых полуосей пятна будет равно β*2α, или, считая, что пятно невелико и угол α мал, равно β*2α = sin ω, где ω — угол, под которым мы смотрим в воду.

Чем меньше этот угол, тем больше вытянуто пятно. Если взгляд скользит по поверхности, то пятно света будет до бесконечности вытягиваться и суживаться.

Рис. 3. Скорость ветра (слева направо): 12 м/с; 12 м/с; 5 м/с; 2 м/с. Высота солнца над горизонтом: 30°; 20°; 13°; 7°
Рис. 3. Скорость ветра (слева направо): 12 м/с; 12 м/с; 5 м/с; 2 м/с. Высота солнца над горизонтом: 30°; 20°; 13°; 7°

При наблюдении световых дорожек на поверхности моря угол со обычно мал — световые дорожки достигают горизонта (см. рис. 3), так что можно говорить только о ширине дорожки. И хотя полученные нами формулы буквально не применимы в этом случае, пользуясь ими, можно не только качественно объяснить происхождение дорожек, но и понять зависимость их ширины от силы ветра и высоты солнца над горизонтом: с увеличением α и h ширина дорожки возрастает.

Источник